Please use this identifier to cite or link to this item: http://dspace.mediu.edu.my:8181/xmlui/handle/10261/3061
Full metadata record
DC FieldValueLanguage
dc.creatorAlepuz, Paula M-
dc.creatorMatheos, Dina-
dc.creatorCunningham, Kyle W.-
dc.creatorEstruch, Francisco-
dc.date2008-02-25T10:40:21Z-
dc.date2008-02-25T10:40:21Z-
dc.date1999-11-
dc.date.accessioned2017-01-31T01:00:22Z-
dc.date.available2017-01-31T01:00:22Z-
dc.identifierGenetics 153 (3) : 1219-1231 (1999)-
dc.identifierhttp://hdl.handle.net/10261/3061-
dc.identifier.urihttp://dspace.mediu.edu.my:8181/xmlui/handle/10261/3061-
dc.descriptionIn eukaryotes, control of transcription by extracellular signals involves the translocation to the nucleus of at least one component of the signal transduction pathway. Transport through the nuclear envelope requires the activity of an import or export receptor that interacts with the small GTPase Ran. We have cloned the MSN5 gene of the yeast Saccharomyces cerevisiae that is postulated to encode one of these receptors. Msn5p belongs to a family of proteins with a conserved N-terminal sequence that acts as a RanGTP-binding domain. The results presented here provide genetic data supporting Msn5p involvement in several different signal transduction pathways.;All of these pathways include changes in gene expression, and regulated nucleocytoplasmic redistribution of a component in response to external conditions has already been described in some of them. We have cloned MSN5 following two different strategies. Msn5p was constitutively localized in die nucleus. Phenotypic analysis of the msn5 mutant demonstrated that this protein participates in processes such as carabolite repression, calcium signaling, mating, and cell proliferation, as well as being involved in previously characterized phosphate utilization. Therefore, Msn5p could be a receptor for several proteins involved in different signaling pathways.-
dc.descriptionSpanish Ministry of Education grants P94-0994 and PB97-1468-CO2-02. Searle Scholars Programs/ Chicago Community Trust (FY96-1131). National Institutes of Health (GM-53082)-
dc.format450989 bytes-
dc.format2459 bytes-
dc.formatapplication/pdf-
dc.formattext/plain-
dc.languageeng-
dc.publisherGenetics Society of America-
dc.rightsclosedAccess-
dc.subjectsignal transduction pathways-
dc.subjectGTPases-
dc.subjectSaccharomyces cerevisiae-
dc.subjectMsn5p-
dc.titleThe Saccharomyces cerevisiae RanGTP-binding protein Msn5p is involved in different signal transduction pathways-
dc.typeArtículo-
Appears in Collections:Digital Csic

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.