Please use this identifier to cite or link to this item: http://dspace.mediu.edu.my:8181/xmlui/handle/123456789/8324
Full metadata record
DC FieldValueLanguage
dc.creatorKopelevich Yakov-
dc.date2003-
dc.date.accessioned2013-06-01T10:51:09Z-
dc.date.available2013-06-01T10:51:09Z-
dc.date.issued2013-06-01-
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332003000400020-
dc.identifierhttp://www.doaj.org/doaj?func=openurl&genre=article&issn=01039733&date=2003&volume=33&issue=4&spage=737-
dc.identifier.urihttp://koha.mediu.edu.my:8181/jspui/handle/123456789/8324-
dc.descriptionAlthough a considerable amount of the research work has been done on graphite, its physical properties are still not well understood, and novel phenomena such as the magnetic-field-driven metal-insulator transition (MIT), the quantum Hall effect, ferromagnetic and superconducting correlations have recently been revealed. Theoretical analysis suggests that the MIT in graphite is the condensed-matter realization of the magnetic catalysis phenomenon known in relativistic theories of (2 + 1) - dimensional Dirac fermions (DF), i. e. that the applied field opens an insulating gap in the spectrum of DF, associated with the electron-hole pairing. On the other hand, we demonstrate in this paper that a two parameter scaling analysis proposed by Das and Doniach [D. Das and S. Doniach, Phys. Rev. B 64, 134511 (2001)] to characterize the magnetic-field-tuned Bose metal - insulator transition can be well applied to the MIT observed in graphite. We discuss the possibility that the MIT in graphite is associated with the transition between Bose metal and excitonic insulator states.-
dc.publisherSociedade Brasileira de Física-
dc.sourceBrazilian Journal of Physics-
dc.titleGraphite as a bose metal-
Appears in Collections:Physics and Astronomy

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.