Please use this identifier to cite or link to this item: http://dspace.mediu.edu.my:8181/xmlui/handle/123456789/8705
Title: Perturbative Quantum Gravity and its Relation to Gauge Theory
Keywords: Quantum General Relativity
Issue Date: 1-Jun-2013
Publisher: Albert Einstein Institut, Max-Planck Institute for Gravitati
Description: In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
URI: http://koha.mediu.edu.my:8181/jspui/handle/123456789/8705
Other Identifiers: http://www.livingreviews.org/lrr-2002-5
http://www.doaj.org/doaj?func=openurl&genre=article&issn=14338351&date=2002&volume=5&issue=&spage=5
Appears in Collections:Physics and Astronomy

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.