Please use this identifier to cite or link to this item: http://dspace.mediu.edu.my:8181/xmlui/handle/1957/2301
Title: Poly(vinyl alcohol) / cellulose nanocomposite barrier films
Authors: Simonsen, John
Rochefort, Skip
Karchesy, Joe
Kelly, Christine
Cann, David
Keywords: Cellulose nanocrystals
Barrier films
Nanocomposite films
Issue Date: 16-Oct-2013
Description: Graduation date: 2007
There is a continual interest in developing robust, flexible, durable, lightweight, waterborne polymer barrier coatings which are increasingly resistant towards both chemical warfare agents as well as an ever growing number of toxic industrial chemicals. In this study, barrier films were prepared with poly(vinyl alcohol) (PVOH) and varying amounts of cellulose nanocrystals (CNXLs) as filler. Poly(acrylic acid) (PAA) was used as a crosslinking agent to provide water resistance to PVOH. The films were heat treated at various temperatures (125, 150, 170, 185 °C) in order to determine the optimum crosslinking density. Heat treatment at 170 °C for 45 minutes resulted in films with improved water resistance without polymer degradation. Infrared spectroscopy (FTIR) indicated ester bond formation with heat treatment. Mechanical tests showed that films with 10%CNXLs/ 10%PAA/ 80%PVOH had the highest tensile strength, tensile modulus and toughness of all the films studied. Polarized optical microscopy and atomic force microscopy showed agglomeration of CNXLs at filler loadings of 15% CNXLs. A thermogravimetric analysis (DTGA) showed highly synergistic effects with 10%CNXLs/ 10%PAA/ 80%PVOH and supported the tensile test results. The purpose of these barrier films is to prevent the diffusion of chemical warfare agents while allowing moisture to pass through to allow breathability. Water vapor transmission indicated that all the films allowed moisture to pass. However, moisture diffusion was reduced by the presence of both CNXLs and PAA compared to pure PVOH. The crystalline nature of CNXLs causes the diffusing molecules to undergo a tortuous path, while the crosslinking forms a network structure which reduces diffusion. A standard time lag diffusion test utilizing permeation cups was used to study the chemical barrier properties. The film containing 10%CNXL/ 10%PAA/ 80%PVOH showed an improvement of 90% compared to 100% PVOH film. Surface modification of CNXLs was successful and well dispersed carboxylated CNXLs were obtained. Carboxylated cellulose nanocrystals (C.CNXLs) showed less agglomeration, improved interaction, slightly reduced flux and slightly increased time lags compared to CNXLs.
URI: http://koha.mediu.edu.my:8181/xmlui/handle/1957/2301
Other Identifiers: http://hdl.handle.net/1957/2301
Appears in Collections:ScholarsArchive@OSU

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.