Please use this identifier to cite or link to this item: http://dspace.mediu.edu.my:8181/xmlui/handle/1957/5698
Title: Efficacy of electrolyzed oxidizing water and ozonated water for microbial decontamination of fresh strawberries (Fragaria x ananassa)
Authors: Daeschel, Mark A
Zhao, Yanyun
Bakalinsky, Alan Tagore
Sarker, Mahfuzur
Mata, John E
Keywords: Electrolyzed oxidizing water
Ozonated water
Strawberries
Issue Date: 16-Oct-2013
Description: Graduation date: 2008
The objectives of this project were to evaluate the efficacies of electrolyzed oxidizing (EO) and ozonated waters as antimicrobial agents for enhancing the microbiological safety of fresh strawberries (Fragaria x ananassa). The influence of sodium chloride (NaCl) concentrations used for preparing EO water was evaluated on their bactericidal activities against naturally occurring aerobic mesophiles on strawberries with a contact time of 5, 10, or 15 min. EO water and ozonated water containing about 1.90 ppm ozone were evaluated and compared with sodium hypochlorite (NaOCl) solution on their capabilities to inactivate and control the growth of Listeria monocytogenes and Escherichia coli O157:H7 inoculated onto strawberries stored at 4 ± 1 °C for up to 15 d, respectively. Post-treatment neutralization of fruit surfaces by washing was also investigated. More than 2 log₁₀ CFU/g reduction of mesophilic aerobic bacteria was achieved in samples washed for 10 or 15 min in EO water prepared from 0.10% (w/v) NaCl solution. Bactericidal activity of treatment solutions against L. monocytogenes and E. coli O157:H7 was not affected by post-treatment neutralization, and their effectiveness against both pathogens in whole fruit tissues did not significantly increase with increasing exposure time. The EO water had an equivalent antibacterial effect as compare with NaOCl in eliminating L. monocytogenes and E. coli O157:H7 on whole strawberry tissues. Fruit surfaces washing with distilled water resulted in 1.90 and 1.27 log₁₀ CFU/ml of rinse fluid reduction of L. monocytogenes and E. coli O157:H7, respectively, whereas ≥ 2.60 log₁₀ CFU/ml of rinse fluid reduction of L. monocytogenes and up to 2.35 and 3.12 log reduction of E. coli O157:H7 were observed on fruit surfaces washed with EO water and NaOCl solution, respectively. However, EO water and NaOCl solution treatments did not exhibit a higher microbicidal activity than water treatment during refrigeration storage. The ozone treatment on inoculated strawberries was not remarkably effective in removing and eliminating pathogens on the whole fruit tissues, but the populations of L. monocytogenes and E. coli O157:H7 were significantly decreased after ozone treatment regardless of the exposure time. The number of L. monocytogenes and E. coli O157:H7 on fruit surfaces was decreased by 2.17 and 2.02 log₁₀ CFU/ml of rinse fluid, respectively, after washing with ozonated water for 10 min.
URI: http://koha.mediu.edu.my:8181/xmlui/handle/1957/5698
Other Identifiers: http://hdl.handle.net/1957/5698
Appears in Collections:ScholarsArchive@OSU

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.