DSpace Repository

Using ship tracks to characterize the effects of haze on cloud properties

Show simple item record

dc.contributor Coakley, James A. Jr.
dc.contributor Vong, Richard J.
dc.contributor Twohy, Cynthia
dc.contributor Doel, Ronald E.
dc.date 2006-07-12T18:13:45Z
dc.date 2006-07-12T18:13:45Z
dc.date 2006-06-14
dc.date 2006-06-14
dc.date.accessioned 2013-10-16T07:38:27Z
dc.date.available 2013-10-16T07:38:27Z
dc.date.issued 2013-10-16
dc.identifier http://hdl.handle.net/1957/2375
dc.identifier.uri http://koha.mediu.edu.my:8181/xmlui/handle/1957/2375
dc.description Graduation date: 2007
dc.description 1-km MODIS observations of ship tracks off the west coast of the U.S. are used to characterize changes in cloud visible optical depths, cloud droplet radii, cloud cover fraction, and column cloud liquid water amount as low-level marine clouds respond to particle pollution from underlying ships. This study re-examines the finding of earlier studies based on Advanced Very High Resolution Radiometer (AVHRR) observations showing that when restricted to pixels overcast by low-level, single-layered cloud systems, the polluted clouds in the ship tracks had on average ~20% less liquid water than the nearby uncontaminated clouds. This study uses Moderate Imaging Spectroradiometer (MODIS) observations from the Terra and Aqua satellites and takes advantage of the 1.6 and 2.1-µm channels in addition to the 3.7-µm channel available on AVHRR to derive droplet effective radii. The additional channels allow for different and presumably more comprehensive analyses of the cloud properties. In addition, this study uses a retrieval scheme that accounts for the effects of partial cloudiness within the 1-km pixels on the retrieved cloud properties. An improved automated track finding scheme that allows for the selection of unpolluted clouds to be closer to the clouds identified as being polluted is also employed in this study. When restricted to overcast pixels, as was done in earlier studies, results from the Terra and Aqua MODIS observations indicate that cloud droplet effective radii are significantly smaller and cloud optical depths significantly larger for polluted pixels than for unpolluted pixels. Cloud top height does not change when clouds become polluted but cloud liquid water path decreases slightly but significantly. The decrease in cloud liquid water obtained with the MODIS observations was at most ~10%, much less than the 20% obtained with the AVHRR observations. This decrease, however, depended on the wavelength used to derive the droplet effective radii. Also, the clouds that were most sensitive to pollution were those with small optical depths and large droplet effective radii.
dc.language en_US
dc.subject ship tracks
dc.subject aerosol indirect effect
dc.subject cloud liquid water
dc.subject MODIS
dc.title Using ship tracks to characterize the effects of haze on cloud properties
dc.type Thesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account